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ABSTRACT

An important problem in Question Answering over Knowledge

Bases is to interpret a question into a database query. This prob-

lem can be formulated as an instance of semantic parsing where a

natural language utterance is analyzed into a (possibly executable)

meaning representation. Most semantic parsing strategies for Ques-

tion Answering use models with limited expressiveness because it

is difficult to characterize it and systematically control it. In this

work we use tree-to-tree transducers which are very general and

solid models to transform the syntactic tree of a question into the

executable semantic tree of a database query. When designing these

tree transducers, we identify two parameters that influence the con-

struction cost and their expressive capabilities, namely the tree

fragment depth and number of variables of the rules. We charac-

terize the search space of tree transducer construction in terms of

these parameters and show considerable improvements in accuracy

as we increase the expressive power.
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1 INTRODUCTION AND RELATEDWORK

Question Answering (QA) over Knowledge Bases (KBs) is a step

forward in the realization of human-machine natural language in-

terfaces to large structured knowledge resources. In this task, one

of the main challenges is the interpretation of a natural language

utterance into an executable meaning representation. In the com-

munity of Natural Language Processing, this task can be formulated

as a semantic parsing problem where the objective is to produce

a symbolic meaning representation with predicates grounded to

Knowledge Base constants (entities and relations). This problem

is different from that of the Simple Questions tasks [2, 21] where
researchers try to identify a single fact from a KB given a short

question that typically involves only one relation. Instead, we aim

to answer questions that require higher levels of compositionality,

aggregation or KB inference.

There are two main strategies when doing executable semantic

parsing for QA over large KBs. The first one is that of Berant et al.

[1] where a question is directly parsed into a semantic formula

without an intermediate syntactic representation (string-to-tree

transformations). In this approach, the grammar of the executable

semantic representation is manually specified
1
and the parameters
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1
These grammars are typically small. Thus, manual specification is often feasible.

of a statistical model are estimated with the objective to guide the

parser towards correct derivations. The second strategy follows

the principles of the syntax-semantic interface, which is a popular

paradigm of semantic compositionality among linguists and formal

semanticists (tree-to-tree transformations). In this strategy, the syn-

tactic analysis of a question (or more generally, a sentence) is used

to guide the semantic composition of a symbolic meaning represen-

tation. Some early representatives are the work of Ge and Mooney

[5] and that of Wong and Mooney [19]. Most recently, dependency

trees of questions are transformed into grounded meaning rep-

resentations (SPARQL queries) using a set of manually designed

rules [14], establishing a new state of the art.

We commit to this second strategy with tree-to-tree transducers

which are general and well-studied models [15, 17] that describe

how input trees can be transformed into output trees. Knight and

Graehl [10] give a good overview. Given the generality of these

models, they have been used in a variety of text transformation

tasks such as paraphrasing and textual entailment [20], text sum-

marization [4] or question answering [8]. However, it is difficult

to induce these tree transducers in semantic parsing tasks where

there is a large vocabulary in the target language (i.e. number of

constants in the KB) and typically small numbers of examples of

tree pairs in the training set. Martínez-Gómez and Miyao [13] pro-

posed a tree mapping algorithm that served as the basis to induce

tree transducers from small data, allowing the application of these

models to Question Answering tasks over large Knowledge Bases.

However, they did not study how transducer rules with different

expressiveness affect model accuracy in a downstream application

and its impact in the transducer construction cost.

Our contribution is a formal characterization of the search space

in the tree mapping algorithm that induces tree transducer gram-

mars. This characterization evidences two critical parameters that

control the model expressiveness and its complexity, which we be-

lieve is useful in text transformation tasks that deploy synchronous

tree grammars. We evaluate the expressiveness of the resulting tree

transducers in terms of QA accuracy and we demonstrate the impor-

tance of tree-to-tree transformation models whose rules consume

and produce tree fragments of depth larger than one.

2 BACKGROUND

Given a question and a Knowledge Base, our system performs

the following steps. First, obtain the constituent syntactic tree of

the question. Second, use a set of weighted rules to transform

fragments of the syntactic tree into fragments of a semantic tree and

compose the executable meaning representation. Finally, execute
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the meaning representation (i.e. SPARQL query) on a KB and return

the results. As a running example, consider the question:

Q: how many teams participate in the uefa
which is syntactically analyzed into the following constituent tree:

(1)

The objective is to transform such a syntactic tree into the fol-

lowing SPARQL query:

SELECT COUNT(?x ) WHERE {

?a Team ?x .

?a League Uefa . }

(2)

which corresponds to the following λ expression:

count(λx .∃a.Team(x ,a) ∧ League(a, Uefa)) (3)

where Team and Uefa are the KB entities to which the natural

language expressions teams and uefa map into. Note that the ex-

pressions in Equation 2 and Equation 3 do not have a tree structure

but a graph structure due to the presence of repeated variables (?a
or a) at the leaves. However, it is convenient to shape these graph

structures into the form of a tree. To this end, Liang [11] proposes

the λ-DCS tree language, where existentially quantified variables

are made implicit. For our running example, the λ-DCS expression
would be:

count(Team.League.Uefa) (4)

which can be trivially represented as a semantic tree structure:

(5)

Thus, we transform the syntactic tree s in (1)
2
into the executable

semantic tree t in (5)
3
which can be later trivially converted into

the SPARQL query in (2).

The tree-to-tree transformation from (1) to (5) can be performed

with a set of weighted rules (see Figure 1) whose left-hand-sides

match and consume fragments of the syntactic tree (1) and produce

tree fragments of the executable semantic tree (5). These rules are

at the core of a tree transducer, which we describe now.

Following the same terminology as Graehl and Knight [7], a

tree transducer is a 5-tuple (Q, Σ,∆,qstart,R ) where Q is the set of

transducer states that carry some memory through the transforma-

tion process, Σ is the set of input symbols (i.e. syntactic categories

and English words), ∆ is the set of output symbols (KB entities

2
We also call it source tree s .

3
We also call it target tree t .

Figure 1: Transducer rules that transform syntactic tree (1)

into executable semantic tree (5).

and relations), qstart is the initial state from which the tree trans-

formation starts, and R is the set of transducer rules. Transducer

rules ri ∈ R define atomic transformations and they have the form

q.ti
s
→ to , where q ∈ Q is the rule state, ti is an input (syntac-

tic) tree fragment, to is an output (semantic) tree fragment, and

s is the score of the rule. In our work, we commit to extended4

root-to-frontier5 linear6 transducers [12], possibly with deleting7

operations. Some rules are terminal rules whose ti match entire

syntactic subtrees and whose to produce semantic subtrees (e.g.

r4 and r5). Other rules (e.g. r1 − r3) are non-terminal rules where
variables xi are connection points with other rules thus carrying

over the tree compositionality.

Note in Figure 1 how some rules are more complex (and expres-

sive) than others. For instance, the left-hand-side of r4 is a syntactic
subtree of depth 1 (one-level subtree) with no variables, whereas

the left-hand-side of r1 has depth 4 and two variables. We formalize

this concept in the next section and characterize the space of possi-

ble rules by parameterizing it in terms of rule depth and number of

variables.

3 METHODOLOGY

In our characterization, the expressiveness of a tree transducer

depends on the expressiveness of its rules since we keep the states

Q and input/output vocabulary (Σ and ∆) constant. In turn, the

expressiveness of the transducer rules (r = q.ti
s
→ to ) depends on

the characteristics of the input and output tree fragments (ti and
to ). Thus, if we want to characterize and parameterize the space of

4ti may have depth larger than 1.

5
Top-down transformations.

6ti variables appear at most once in the to .
7
Some variables on the ti may not appear in the to .
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induced transducers we need to characterize the space of possible

tree fragments. To this end, we need to introduce terminology that

allows us to define tree fragments with precision.

We uniquely identify nodes in a tree by using paths p ∈ P,
which are similar to Gorn addresses [6] but with a tuple notation.

For example, in Figure 1, the path p = (0) identifies the node

with syntactic category WHNP, that is, the child index 0; the path

p = (0, 1) identifies the node NNS and p = () identifies the root. For
convenience we define the path concatenation operation as p1 · p2.
For example, given p1 = (a,b) and p2 = (c,d ), their concatenation
results in p1 · p2 = (a,b, c,d ) with a path length |(a,b, c,d ) | = 4.

We define a tree fragment t ∈ T as s ↓ p ⊥ {q1, . . . ,qn }, which
is a tree fragment from tree s rooted at path p ∈ P with n variables

substituting subtrees at subpaths qi ∈ P for 1 ≤ i ≤ n. Note that
different orders of {q1, . . . ,qn } allow to describe tree transforma-

tions that swap branches. The path p is a prefix of all qi and qi is
not the prefix of any other subpath qj for i , j since variables can
only appear at the leaves of tree fragments (no variable can have

children). In our running example, the right-hand-side of r1 would
be a tree fragment t ↓ () ⊥ {(1, 0), (1, 1)} where t is the target

(semantic) tree, p = () since the rule starts at the root of t and
there are two subpaths q1 = (1, 0) and q2 = (1, 1) that specify the

location of each of the two variables x1 and x2. Another example

would be the left-hand-side of r4, described as s ↓ (0, 1) ⊥ {} (note
that there are no variables).

We can now define the space of tree fragments of a tree s rooted
at any node pi as:

T s
pi = {s ↓ pi ⊥ {q1, . . . ,qn } |

qi ∈ Ps ∧ pi · r = qi ∧ |r | ≤ d,

1 ≤ i ≤ n} (6)

where Ps is the set of paths to all nodes in tree s . The space of tree
fragments T s

pi is parameterized by i) the maximum depth d of tree

fragments (|r | ≤ d) which controls the exponential growth and

ii) the maximum number of variables n which limits the factorial

combinations (n!) of branch orderings.

The space of transducer rules
8
is formed by all pairs of tree

fragments T s
pi × T

t
po for all pi ∈ Pi paths in the syntactic source

tree s and all po ∈ Po paths in the semantic target tree t . The
mapping cost between between trees s and t at paths pi and po can

be computed as:

C (s ↓ pi , t ↓ po ) =

min

q,q′
{γ
(
s ↓ pi ⊥ q, t ↓ po ⊥ q′

)
+

|q |∑
j=1

C

(
s ↓ qj , t ↓ q

′
j

)
} (7)

where s ↓ pi ⊥ q ∈ T s
pi , t ↓ po ⊥ q′ ∈ T t

po , qj ∈ q and q′j ∈

q′. The cost between two tree fragments γ (ti , to ) depends on the

application. In our case, it is an ensemble of cost functions that

assigns low costs to pairs of syntactic and semantic subtrees whose

leaves (natural language phrases and KB constants) may have a

linking relation.

The mapping cost between the roots of s and t can be computed

as C (s ↓ (), t ↓ ()) whereas the node-to-node correspondences can

8
If we ignore the rule states.

be recovered using back-pointers as it is usual in dynamic program-

ming. For the sake of efficiency we perform the search using an

approximate bottom-up beam-search algorithm [13] parameterized

by d and n.

4 EXPERIMENTS

We use tree transducers to transform the syntactic tree of a question

into a SPARQL query. We evaluate on Free917, a corpus of 641

question-query pairs for training and 276 questions for testing. We

obtain syntactic constituent trees of questions using the Stanford

caseless models [9] which produce trees with an average of 24.5

nodes and tree height 7.4 in this dataset. The gold queries in this

dataset typically have between one and three statements, possibly

with a count aggregator. We use the entity lexicon released by Cai

and Yates [3] and the relation lexicon released by Martínez-Gómez

and Miyao [13]. Our KB is the same Freebase dump as in Berant

et al. [1], which contains millions of facts.

We automatically induce (construct) tree-to-tree transducers by

extracting rules from pairs of question syntactic trees and query

trees. This rule extraction is performed by a tree mapping search

algorithm that is constrained by d and n, thus resulting in tree

transducers with different levels of expressiveness
9
. The weights

(parameters) of the resulting tree-to-tree transducers are estimated

using the latent variable averaged structured perceptron. In this

parameter estimation routine, rules are represented by a feature

vector
10

and the rule score is the result of a linear combination be-

tween these rule features and model weights. We reward
11

weights

associated to rule sequences that transform a question syntactic

tree into a query that retrieves the correct answer as given in the

gold training data. We perform 3 iterations over the whole training

set and use the learned weights for the decoding stage. The number

of iterations and the learning rate are estimated on a validation

split from the training data.

For questions in the test set, our decoder generates 10, 000 target

trees which we trivially convert into SPARQL queries that we run

against the KB. Then, we keep those that retrieve at least one answer.

We count a point of accuracy if the highest scoring SPARQL query

retrieves the correct set of answers whereas we count a point of

coverage if at least one query in the 10, 000 candidates retrieves the

correct set of answers. Then we average the accuracy and coverage

over the whole test set.

Our results in terms of accuracy and coverage for different set-

tings of d and n are in Table 1. The table also displays the average

number of rules extracted per tree pair in the training data and

the average time, median, maximum and standard deviation of the

tree mapping and rule extraction across all training tree pairs. The

system t2t-d∞-n∞ imposes no constraints on d and n whereas

the rest of the systems do. For example, the system t2t-d3-n∞
limits the tree fragment depth to d ≤ 3 but imposes no constraints

on the number of variables (n ≤ ∞).

9
That is, transducers with rules with a maximum of d tree fragment depth and a

maximum of n variables.

10
These features are instantiated using hand-engineered feature templates thatmeasure

rule characteristics such as the number of nodes in the left- or right-hand-side tree

fragments, the presence of an aggregator function, n-gram overlap between words in

the question and text literals associated to KB entities or relations, etc.

11
That is, we increase their value by a small factor which is the learning rate: 0.01.
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Systems Acc. Cov. # Rules Time

t2t-d∞-n∞ .64 .79 708 3.9, 1.7, 166.6, 8.6

t2t-d1-n∞ .36 .66 1958 1.3, 0.9, 16.5, 1.1

t2t-d2-n∞ .56 .84 886 1.7, 1.1, 24.3, 2.0

t2t-d3-n∞ .65 .80 746 2.4, 1.3, 45.7, 3.5

t2t-d4-n∞ .64 .79 713 2.8, 1.4, 67.0, 4.7

t2t-d5-n∞ .64 .79 708 3.0, 1.4, 87.1, 5.5

t2t-d∞-n1 .09 .30 1228 3.0, 2.0, 44.0, 3.3

t2t-d∞-n2 .63 .83 743 3.4, 1.9, 88.5, 5.3

t2t-d∞-n3 .63 .79 713 3.6, 1.8, 128.5, 6.9

t2t-d∞-n4 .63 .78 706 4.2, 1.9, 149.8, 8.6

t2t-d∞-n5 .63 .78 708 4.1, 1.9, 154.0, 8.3

Table 1: Accuracy and coverage results for the test split of

Free917. "# Rules" and "Time" stand for the average number

of rules and tree mapping time (average, median, maximum

and standard deviation) across tree pairs in the training set.

When inducing transducers with simple rules (depth d ≤ 2 or

n = 1), the accuracy and coverage is low but the tree mapping

is fast. The accuracy (and coverage) increases progressively and

saturates between .63 and .65 (.78 and .84) as we increase the rule

expressiveness by setting higher limits in tree fragment depth and

number of variables. However, tree mapping time also seems to

increase proportionally to rule expressiveness in terms of d and n
but no asymptotic trend can be observed due to the small training

set and relatively small question complexity. The average number

of rules changes only slightly for d ≥ 4 and n ≥ 3, which suggests

that questions in Free917 do not require transformation operations

more expressive than that.

As a comparison to other systems, SEMPRE [1] obtains and

accuracy of .62, whereas Reddy et al. [14]’s DepLambda system

obtains an accuracy of .78 and a coverage of .96. However, these

systems are not directly comparable because they use different

entity/relation linkers, manually specified grammars and (or) hand-

crafted rules.

5 FUTUREWORK AND CONCLUSION

We have concentrated on describing the search space of the ques-

tion interpretation problem but we have neglected the grounding

problem (mapping natural language expressions to KB constants)

by re-using manually created lexicons of entities and relations.

However, in the realization of a full-fledged QA system we need to

integrate wide-coverage entity and relation linkers which we plan

to do in the near future. Moreover, we claimed that tree transducers

are general models but we evaluated on a single dataset. Our next

step is to use other datasets such as WebQuestions [1], GraphQues-

tions [16] and QALD challenges [18] to assess the generality of

these models. Yet another extension is to use these tree-to-tree

transducers as an effective generalization of symbolic semantic

parsing with grounding. This extension would encompass the cur-

rent state of the art based on manually designed transformation

rules for dependency trees but with the added advantage of includ-

ing a bootstrapping mechanism to acquire new rules for questions

with previously unseen syntactic structures.

We showed a characterization of the tree mapping search space

that is parameterized by the tree fragment depth d and number of

variables n in rules. Experimental results showed how these two

parameters trade QA accuracy by tree mapping time. Specifically,

we found that tree transducers whose rules are limited to d ≤ 2 or

n = 1 obtain a low accuracy but the tree mapping time to induce

these transducers is fast. Higher accuracies were obtained when

using more expressive rules (d = 3 or n = 2). However, no further

gains were obtained for larger tree fragment depths and number

of variables because the questions and target trees in the Free917

corpus are relatively simple and do not require induced rules with

such a high level of expressiveness. As a comparison, SEMPRE and

DepLambda have grammar rules of depth d = 1. The results in

this paper suggest that those systems could also be improved by

increasing their rule depth. However, since their grammars are

hand-crafted, the manual specification of these complex rules is

not trivial and requires very fine grained linguistic analysis.
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